A Decision Support System Using Text Mining Based Grey Relational Method for the Evaluation of Written Exams.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Grey relational analysis (GRA) is a part of the Grey system theory (GST). It is appropriate for solving problems with complicated interrelationships between multiple factors/parameters and variables. It solves multiple-criteria decision-making problems by combining the entire range of performance attribute values being considered for every alternative into one single value. Thus, the main problem is reduced to a single-objective decision-making problem. In this study, we developed a decision support system for the evaluation of written exams with the help of GRA using contextual text mining techniques. The answers obtained from the written exam with the participation of 50 students in a computer laboratory and the answer key prepared by the instructor constituted the data set of the study. A symmetrical perspective allows us to perform relational analysis between the students' answers and the instructor's answer key in order to contribute to the measurement and evaluation. Text mining methods and GRA were applied to the data set through the decision support system employing the SQL Server database management system, C#, and Java programming languages. According to the results, we demonstrated that the exam papers are successfully ranked and graded based on the word similarities in the answer key. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Symmetry (20738994) is the property of MDPI Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)